
THE UNIVERSITY OF KANSAS CANCER CENTER

KRAS is the Most Common Driver Oncogene in Humans

- Approximately 30% of all cancers are associated with a RAS mutation, suggesting that a mutation in RAS oncogenes may be a leading cause of carcinogenesis¹
- Of the RAS oncogenes, a mutation in KRAS is the most frequent, followed by NRAS and HRAS

Figure 1. Frequency in *KRAS* Aberrations by Tumor Type

Distribution of KRAS Variants Differs by Cancer Type

• KRAS^{G12C} mutations are most prevalent in NSCLC; however, they also occur in GI cancers²

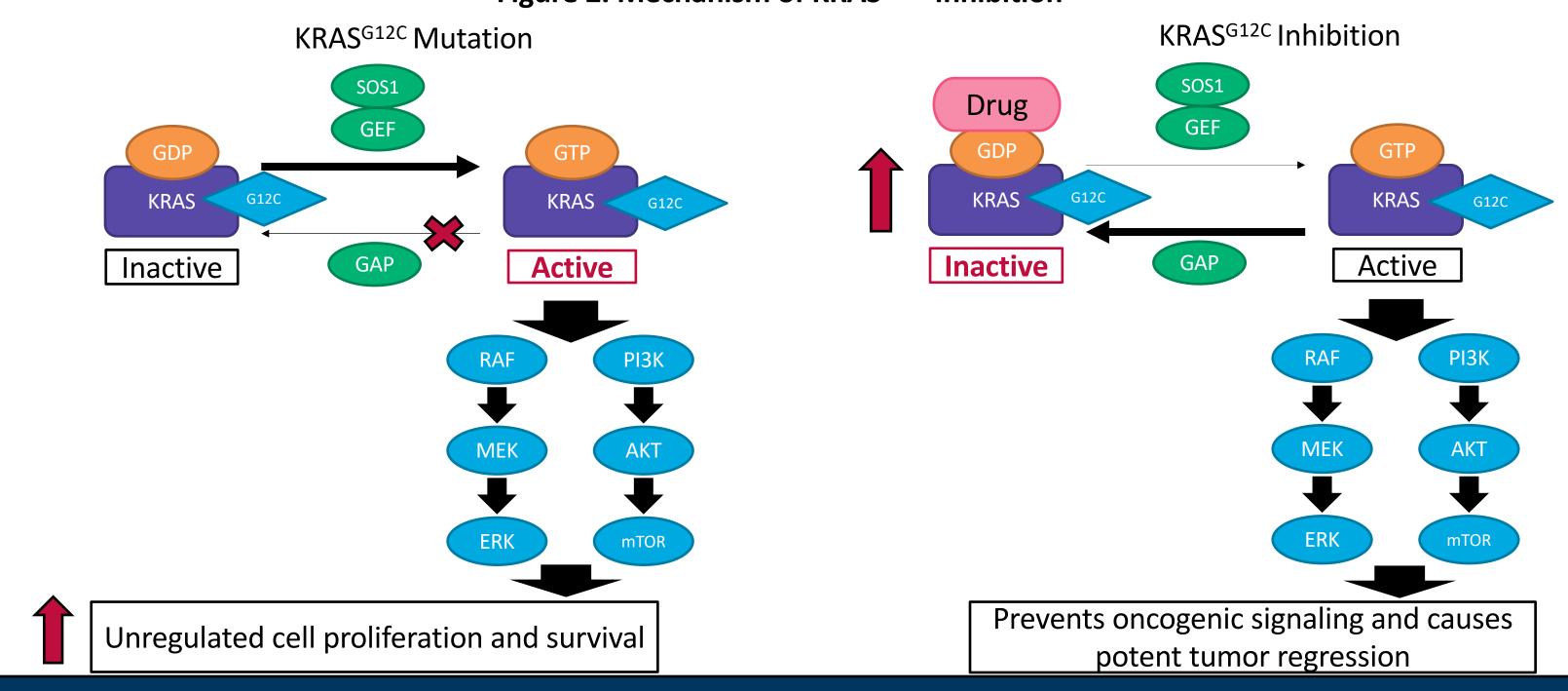

• The most common KRAS point mutation in all solid tumors is KRAS^{G12D}

Table 1. Frequency of KRAS Point Mutations in KRAS-Mutated Solid Tumors								
Mutation	CRC (%)	Appendix (%)	Pancreatic (%)	Small Bowel (%)	NSCLC (%)	All Solid Tumors (%)		
G12C	7	7.4	1.8	6	36.8	11.9		
G12D	29.9	50.7	41.8	38.4	14.5	29.5		
G12R	1	0	16.1	3.3	1.1	6.2		
G12V	20	25.7	31.6	22.5	19.2	23		
G13D	15.8	7.4	0.4	11.9	2.7	6.5		

KRAS^{G12C} Inhibitors Prevent Oncogenic Signaling

- KRAS^{G12C} mutation impairs GTP hydrolysis, which shifts KRAS to the active GTP-binding state to drive protumorigenic effector signaling^{3,4}
- KRAS^{G12C} inhibitors form a covalent bond with cysteine 12 at the switch-II pocket, trapping KRAS in the inactive, GDP-bound state

Figure 2. Mechanism of KRAS^{G12C} Inhibition

non-small-cell lung cancer; P-gp, p-glycoprotein; SqCC, squamous cell carcinoma

K-RAS-tling with Resistance: KRAS^{G12C} Inhibitors and Strategies for Overcoming Resistance

Kelly M Brunk, PharmD, BCOP^{1,2} and Sarah K Blocker, PharmD^{1,2}

¹The University of Kansas Health System, Kansas City, Kansas; ²The University of Kansas Cancer Center, Westwood, Kansas

All KRAS Aberrations

KRAS mutation KRAS amplification

KRAS mutation and amplification

KRAS^{G12C} Inhibitors are Only FDA-Approved in NSCLC

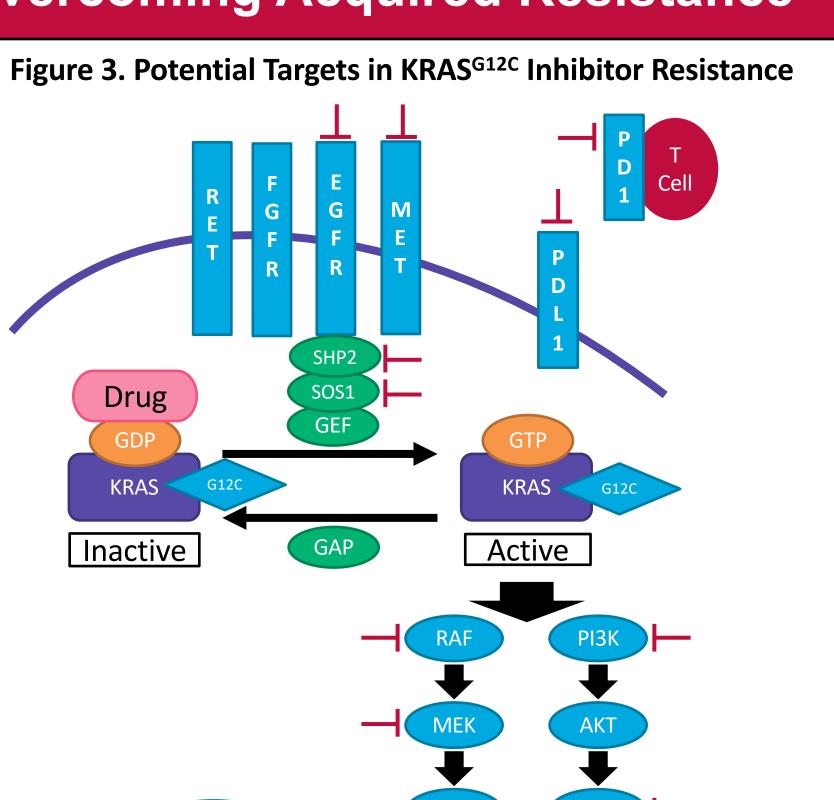
As of March 2023, the FDA has approved two KRAS^{G12C} inhibitors^{5,6}

Table 2. KRAS ^{G12C} Inhibitor Details				
	Adagrasib (Krazati [®])	Sotorasib (Lumakras [®])		
FDA-Approved Indication	Locally advanced or metastatic NSCLC with KRAS ^{G12C} mutation	Locally advanced or metastatic NSCLC with KRAS ^{G12C} mutation		
Dosing	Three 200 mg tablets (600 mg) PO BID	Eight 120 mg tablets (960 mg) PO QD		
Pharmacokinetics	98% protein bound Irreversibly binds Half life: 23 hours Metabolized via CYP3A4	89% protein bound Irreversibly binds Half life: 5 hours Metabolized via CYP3A		
Drug Interactions	Strong CYP3A4 inhibitors, strong CYP3A4 inducers, CYP3A4 substates, CYP2C9 substrates, CYP2D6 substrates, P-gp substrates, QTc prolonging drugs	Acid-reducing agents, strong CYP3A4 inducers, CYP3A4 substrates, P-gp substrates, BCRP substrates		
Warnings	Hepatotoxicity, gastrointestinal bleeding and obstruction, pulmonary toxicity, QTc interval prolongation	Hepatotoxicity, pulmonary toxicity		
Common ADE	Edema, prolonged QTc, diarrhea, musculoskeletal pain, elevated creatinine, hypoalbuminemia, hypomagnesemia, hypokalemia	Edema, skin rash, musculoskeletal pain, proteinuria, hypocalcemia, hyponatremia, hypoalbuminemia		
Emetic Potential	Moderate to high	Minimal to low		

Acquired Resistance Frequently Occurs

Resistance to KRAS^{G12C} inhibition can occur through several on-target and off-target mechanisms rate of 45% with the use of a KRAS^{G12C} inhibitor⁷

Increased signaling via feedback mechanisms


Acquired mutations

• KRAS alterations • Gene fusions and rearrangements

• Acquired alterations in RAS, MAPK, PI3K

Potential Strategies for Overcoming Acquired Resistance

- Inhibition of proteins downstream of KRAS⁸
- RAF, MEK, PI3K, CDK4/6, and mTOR
- Inhibition of proteins or targets upstream of KRAS⁸
- EGFR, MET, SHP2, PD-L1, PD-1, and SOS1
- KRYSTAL-01 CRC cohort receiving cetuximab with adagrasib had longer progression-free survival and higher objective response rate compared to adagrasib monotherapy⁹
- CodeBreaK 101 CRC cohort receiving panitumumab with sotorasib had an objective response rate of 30%¹⁰
- CodeBreaK 101 CRC cohort receiving trametinib with sotorasib had an objective response rate of 28%¹¹

Transcription

Acquired resistance has been shown in a small histologic analysis of KRAS^{G12C}-mutated cancers to occur at a

Histologic transformation

Table 3. Ongoing Trials Involving KRASG12C Inhibitor Combination Therapy							
KRAS ^{G12C} Inhibitor (Manufacturer)	Combining Agent	Phase Trial and Setting					
Sotorasib (Amgen)	AMG 404 (PD-1 inhibitor) or pembrolizumab Trametinib +/- panitumumab RMC-4630 or TNO155 (SHP2 inhibitors) Everolimus Palbociclib BI 1701963 (SOS1/pan-KRAS inhibitor) Afatinib Panitumumab +/- FOLFIRI Atezolizumab Carboplatin, pemetrexed, docetaxel Bevacizumab + FOLFIRI or FOLFOX	Phase 1b/2 CodeBreaK 101 trial (NCT04185883) in advanced solid tumors, NSCLC, CRC					
Adagrasib (Mirati Therapeutics)	Cetuximab Pembrolizumab, Afatinib, Cetuximab	Phase 3 KRYSTAL-10 trial (NCT04793958) in CRC Phase 1/2 KRYSTAL-1 trial (NCT03785249) in NSCLC CRC					
JAB-21822 (Jacobio)	Cetuximab	Phase 1/2 trial (NCT05002270) in CRC					
GDC-6036 (Genentech)	GDC-1971 (SHP2 inhibitor), Atezolizumab, Erlotinib, Cetuximab, Bevacizumab	Phase 1 trial (NCT04449874) in advanced solid tumors, NSCLC, CRC					

- previously dubbed "undruggable"
- The prevalence of KRAS^{G12C} mutation is ~13% in lung adenocarcinomas, ~3% of colorectal cancers, and ~1-2% of pancreatic cancers¹³
- KRAS^{G12C}-inhibitors prevent oncogenic signaling in KRAS^{G12C}-mutated cancers by binding to GDP-bound KRAS and locking it in its inactive form. This mechanism can be referred to as KRAS-"off" inhibition. Drugs that target KRAS-"on" inhibition are being studied.¹²
- Resistance to KRAS^{G12C}-inhibitors can occur through many mechanisms, including increased feedback signaling, acquired point mutations, and histologic transformation. Resistance leads to short-lived responses, highlighting the need for combination therapy
- Additional KRAS targeting therapies are being developed for solid tumors, including KRAS^{G12D} inhibitors¹²

Semin Cancer Biol. 2019;54:1-13.

- JCO Precis Oncol. 2022;6:e2100245.
- Gene Ther. 2022;29:875-878. N Engl J Med. 2021;384:2382-2393.
- Adagrasib [package insert]. San Diego,
- Sotorasib [package insert]. Thousand Oaks, CA: Amgen Inc.; 2023.

Kelly M Brunk, PharmD, BCOP: kbrunk@kumc.edu

Ongoing Trials

Discussion

• Recent approvals of KRAS^{G12C} inhibitors in NSCLC are a milestone in cancer therapy, as this mutation was

Conclusion

Acquired resistance is a challenge in treating KRAS^{G12C}-mutated cancers, leading to short-lived responses To overcome resistance, trials are investigating various therapies in combination with KRAS^{G12C} inhibitors

References

Mirati Therapeutic	-	

- 7. J Clin Med. 2023;12:709.
- Pharmacol Ther. 2022;229:108050.
- 9. N Engl J Med. 2023;388(1):44-54. 10. Ann Oncol. 2022:33(suppl_7):S136-S196.
- 11. Mol Cancer Ther. 2021:20(12_Supplement):P05-01.
- 12. clinicaltrials.gov. Accessed March 6, 2023
- 13. N Engl J Med. 2020;383:1207-1217.

Contact Information