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OBJECTIVES

1. Define artificial intelligence (Al) and related concepts in oncology
practice

2. ldentify discrete use cases of Al in treatment decision-making and
clinical decision-support

3. Recognize ethical or methodological challenges surrounding the
use of Al

4. Discuss concrete next steps to facilitate responsible use of Al
within health care settings
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Definitions

Artificial intelligence &AII): _ _ _ _ _
Systems that display intelligent behavior by analx_zmg their environment and taking
actions — with some degree of autonomy — to achieve specific goals.!

Autonomous Al:

Al systems that can operate independently, analyze data, make decisions, and execute
tasks without constant human oversight.

Assistive Al:

Al systems that support human users by providing information, suggestions, or
assistance in completing tasks.

Generative Al:

Al systems that can create new content rather than simply analyzing or categorizing
existing information

Large Language Models:

iAI systems trained on vast amounts of text data to understand and generate human
anguage
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Al Biomarkers are Proliferating in Cancer
Care

Al Biomarker Negative Al Biomarker Positive

111 o
Identify patients who may not need short-term hormone Identify patients who may greatly benefit from short-term - ] ] UIt“ ] ]Odal

therapy. hormone therapy. artificial intelligence
.RT .RT+ST-ADT .RT .RT+ST-ADT (M MAI) bIOmarker
test to predict

Hazard ratio: 0.92 (95% ClI, 0.59-1.43, P =0.71) Hazard ratio: 0.34 (95% CI, 0.19-0.63, P < 0.001) .
© 409  n=1046 patients studied © 40% n=673patients studied Whether a pa‘“ent
1] @
o o .
with prostate
& 30% 8 30% ) .
2 2 cancer will benefit
) 0]
= . from hormone
a 10% a 10%

. % therapy and
0 _ﬁﬂr 0 T estimate long-term
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Artera. https://artera.ai/for-patients. Accessed April 2025.



https://artera.ai/for-patients

Al Diagnostics are Proliferating in Cancer
Care

- “..Smart Ultrasound
software providing
early and accurate
breast cancer
diagnosis.”
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We pretend like all Al is autonomous...

Assistive Al algorithms

Autonomous Al algorithms

Level 1

xa

Data presentation

Level 2

s

Clinical decision-support

Conditional avtomation

r
I
I
I
I
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Michole and Rodriguez,

High automation

Level 3 Level 4 Level §
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Full avtomation

Event Al Al Al Al Al
monitoring
Response Clinician Clinician and Al Al Al Al
execution

Input Deep neural network approach

What Matters for

Layer Layer
1 2 n t n I ?
Type of heart rhythm
~ ~" — * Atrial fibrillation
Convolutional Fully connected * Atrioventricular block

Nat Med, 2019

* Supraventricular
tachycardia

Accuracy
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...when Iinstead most current Al is assistive

[ | _1
I Assistive Al algorithms Autonomous Al algorithms
I Level 1 Level 2 Level 3 Level 4 Level §
I II_,-- rI_]EIIEIEII" popoon sl as
I 'x__-> = E = = = = S
I ™ gadE 2 A E |-
I - googon ooooaa noaoog
Data presentation Clinical decision-support I Conditional automation High automation Full automation
Event Al Al IAI Al Al
I manitoring I
I Response Clinician Clinician and Al IAI Al Al
I execution

What Matters for Assistive Al?

Trust
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Poll

You are an oncology pharmacist. What percentage of
your daily pharmacy workflow do you believe could be
partially or completely automated by Al tools in the next

3 years?

Less than 10%
10-25%
26-50%
51-75%
More than 75%
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Poll

In your experience, which part of oncology
medication management would benefit most from Al

support?

a. Drug interaction checking across complex regimens
b. Identifying candidates for dose modification
c. Oral oncology therapy monitoring and adherence
d. Supportive care optimization
e. Inventory management and cost optimization
%7 SPRING
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Examples of Successful
Implementation of Al In
Oncology Practice
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. Christakis and Lamont, BMJ, 2000; Levoy et al, Journal

Use Case: Serious lllness Communication

Early communication is key to
reducing oncology patient

experience

o Reduced end-of-life utilization

o Reduced anxiety and

depression

o Improved caregiver satisfaction

Identifying appropriate patients is
key, but there is a lack of clarity in

prognosis

o Oncologists overestimate
survival by 5.4x

of Pain an

d Symptom Management, 2023
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Developing the Algorithm

1.0

0.8 1

o
[2)]
1

S
N
1

Survival Probability

0.2 7

0.0

—— High risk (n=160, 2.0%)
Low risk (n=7798, 98.0%)

High Risk n Survived 160
Low Risk n Survived 7798

45

119
7726

a0
Time (days)
96
7645

135

84
7582

180

78
7530

Clinician perspectives on machine learning prognostic algorithms
in the routine care of patients with cancer: a qualitative study

Original Investigation | Oncology

Machine Learning Approaches to Predict 6-Month Mortality
Among Patients With Cancer

JAMA Oncology | Original Investigation

Validation of a Machine Learning Algorithm to Predict 180-Day Mortality
for Outpatients With Cancer

Variables Examples Features
Demographics Age, Gender
Comorbidities 33 Elixhauser Total count
comorbidities Recent*
Cancer-specific Stage, tumor Total count
markers First/last value
Min/Max

Laboratories

CMP, CBC, LDH

1.

Recent utilization

Outpatient visit
number

Proportion ordered
STAT

Parikh RB, et al. Support Care Cancer. 2022;30(5):4363-4372. 2. Parikh RB, et al. JAMA Netw Open. 2019;2(10):e1915997. 3. Manz CR, et al. JAMA Oncol. 2020;6(11):1723-1730.




Developing Interfaces to Embed into Clinician

Workflow

Use Case: Predicting mortality to prompt more serious illness communication

Next week's high-risk patients for Serious lliness Conversations

Conversation Connect ~

Thursday, July 18, 2019 at 8:05 AM
Show Details

Dear

The ACC is working to help oncologists have earlier Serious lliness Conversations with patients. In the past four
weeks, you have documented 2 conversations.

18 oncology clinicians have documented more cowyersations than you during that time.

Sincerely,

Performance

& Penn Medicine & s coey

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do elusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
veniam, quis mostrud exercitation ullamco laboris nisi ut aliquip www.conversationconnect pennmedicing upenn,edu

- V-
| 5P author Name et for P
Jan 5, 2019 Registar
Remi

inder

Doe, John 123asems
o Mt 3, 2010 74300 AM

Doe, John 123567880

1000414457 Register
teremes Fipb 27, 2019 43400 AM Reminder

Age 73 Y
Select for SICP
Age 56
J SICP Author Name
Jan 5, 2019

Doe, John 1234567890

it Figl 21, 2019 10:4300 AN

Doe, John 1z34s6m%0
serime: Mar 4, 2018 2:24:00 AM

Doe, John 1z3sem

Sepmimess: Pl 12, 2019 £:13:00 PM

Register
Reminder
Dod John  1zssemse [ seieettor sice
=]

Peer Comparison
Report

Pre-commitment

Default Text

Message

Parikh et al, JAMA Onc, 2020
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Studying Impact

20%
18%
16%
14%

Intervention
Roll-out Begins

% 12% I All Practices
S 10% [ Receive
n 8% ) Intervention
6% I
4%
2% I
0% -
SR S SIS S, g S
AT O I I
QT 90 N9 O WO RS Q Q Q
O M A R A
Month —e—High-risk

Control Intervention

Parikh et al, JAMA Onc, 2023

Chemo last 14
days 10.4% 7.5%
Savings in last
month of life $1500
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. Parikh et al, Journal of Palliative Medicine, 2023

Insights from Clinicians

Population: 25 oncology clinicians (13 high, 12 low responders)

Facilitators:
o Prompting better documentation of conversations in the electronic health record
o Peer comparisons & performance reports
o Validating norms around early conversations

Barriers:
o Cancer-specific heterogeneity in algorithm performance
o Frequency and tone of automated text messages

“In blood cancers, we do so many scheduled admissions and things like stem cell
transplants, there are a lot of patients who would have recently been in the hospital
twice...So actually, [the algorithm-based lists] were | often inaccurate in termsof who
needed to have a discussion ...”
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Use Case: Clinical Trial Prescreening

Assess whether Human-Al teams leveraging large language model output can
more efficiently and/or accurately extract a set of 13 common clinical criteria
from deidentified unstructured electronic health records (EHRS)
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Traditional Clinical Trial Workflow for

Oncology Clinical Trials

Assessed for Eligibility

Randomized

Allocated to

g

Allocated to

e

Received Reéeived

Followed Up Followed Up

Analyzed Analyzed

Generalizability +
Dissemination

Jin et al, Nat Comm, 2024

Top 6% trials with
over 90% recall

Patiant Summary ClinicalTrials.gov
A 58-year-old African-
American woman presents
to the ER with episodic
pressing/burning anterior
chest pain that bega
n two days earlier for the
first time in her life ...

TrialGPT-
Retrieval

Clinical trials

b TrialGPT-
Matching

Criterion-by-criterion analysis for each trial

Criterion 1 Criterion 2 Criterion 3 Criterion ...
Explanation Explanation Explanation Explanation
Evidence Evidence Evidence Evidence
Eligibility Eligibility Eligibility Eligibility

___________ S HT———— S UERTNNES————————— _———

Aggregation

TrialGPT-
Ranking

Clinical trials

Trial Scores

Trial-level Scores Top 10 clinical trials
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Prescreening Is a Key Bottleneck for

Cancer Trials

* Only 5-8% of adult cancer patients participate in trials, with many subpopulations

underrepresented

* Yet 55% of adult cancer patients do participate when offered a trial (Unger et al., INCI 2021)

70% of adults would be “very willing” or

“inclined” to parti e in a cancer trial
If asked to do so (Comis JCO 2003)

Why is trial prescreening inefficient?

Manual screening is
time-consuming (and

o 3 @ labor-intensive) o
44% of cancer patients have a relevant o
trial available for their cancer type at [Manual Screening 1s

- local treating center (Unger JNCI 2019) inaccurate

9]

10% of cancer patients are offered O Manual s::r:_agnlng 1S
— . -O—— random, failing to account

participation in a trial (NCI 2022) o for eligibility likelihood

o

. 5-8% of cancer pafients participate in
frials (Unger ASCO 2016; Unger JNCI 2019)

=
G

=

G

NTanUar scresnimg rans o O

prioritize diverse

populations A 2025 NCODA
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Study Design

D} ]
£ % Unstructured note aggregation
£ —
8 = De-identification
opg

o
» = CRC 1 Interrater reliability check: 86% CRC 2
é 5 % Human + Al [Charts #1-20] Human alone
o O 0
L © Human alone [Charts #21-40] Human + Al
— @
o = o
=E<® Human + Al [Charts #41-60] Human alone

- ... and so on (n= 300+ charts) ... and so on (n= 300+ charts)

© & Chart-level accuracy
5 5
£a Event-level accuracy
o & .

< Timeliness
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Human+Al Collaboration to Improve Prescreening

(1) Abstractor is presented with a patient’s EHR containing a batch of scanned
documents, including both structured and unstructured data sources.

« Qs
Filter by document category Filter v
Documents: 44 of 44 $* Expand All

SOAP_NOTE #doc-01h2vztby9axqpcaséy6y371xb EEN 2 [ SEP 182000 v

Chest x-ray reveals a pleural base right midlung mass which is about 4 x 5 cm, which is a new finding as compared to
the previous x-ray | had from April.

Her pulmonary function test shows a combined moderate restrictive and mild obstructive disease. Patient also had
severe diffusion impairment. Restrictive disease is due to lung resection. Mild obstruction is due to COPD.

CBC shows a white count of 8.6, hemoglobin 11.3, hematocrit 35.2, platelet count 448. Her basic metabolic panel shows
sodium of 135 which is slightly low, potassium of 4.1, chloride 93, carbon dioxide 27, blood urea nitrogen of 18, creatinine
of 0.8 and blood sugar is 240 which is high. Her liver function test are within normal limits.

Assessment: Colon cancer with pulmonary metastases. Patient's pulmonary metastases has recurred. At present
patient is not receiving any chemotherapy. Plan is as per Dr.

History of lung resection causing restrictive lung disease and mild COPD due to cigarette smoking.

SPRING
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Human+Al Collaboration to Improve Prescreening

(1) Abstractor is presented with a patient's EHR containing a batch of scanned documents,
Including both structured and unstructured data sources.

“Human-alone” Workflow

Abstractor scans documents and extracts pre-
specified criteria, populating a “Clinical Event”
panel from scratch. This simulates the current
workflow for EHR review for specific clinical criteria.

“Human+Al” Workflow

Abstractor is provided with a pre-populated
“Clinical Event” panel, linked to the location within
the EHR of each piece of clinical evidence. This list
IS reviewed, edited and refined by the abstractor.

O panel Objects Events Objects&Events View O 2 = T Filters
Filte
Events: 1of 1 m
St =l2 QU
Neoplasm Neoplasm of the colon
Concept Malignant Colon Neoplasm

Assessment: Colon cancer with pulmonary metastases. Patient’s pulmona

o- Panel Objects Events Objects & r O = = = Filters
Events: 27 of 27 m
Sort = [CRE

[ Surgery | Thoracic Incision
91:;...;_4..-,:;‘; Colotomy

Lab Finding WBCs

Lab Finding Platelets

Lab Finding Eosinophil

Lab Finding Hematocrit Value

Lab Finding Hemoglobin

Lab Finding Mcv Rbc

Diagnostic Procedure Positron Emission Tomography

Diagnostic Procedure Ultrasound

Parikh RB, et al. 2024 ASCO Annual Meeting. https://cdn.prod.website-files.com/6746cd1b28e0930a369c6b16/67abch9a6d2b96858blellc2 ASCO_Human-NLP%20Workflows%20T0%20lmprove%20Cancer%20Trial%20Prescreening_Parikh_5.15.24_3PM.pptx.pdf. Accessed April 2025.



https://cdn.prod.website-files.com/6746cd1b28e0930a369c6b16/67abcb9a6d2b96858b1e11c2_ASCO_Human-NLP%20Workflows%20To%20Improve%20Cancer%20Trial%20Prescreening_Parikh_5.15.24_3PM.pptx.pdf

. . . '
Accuracy and Time Gains from an Al-In-

the-Loop Workflow

Minutes Taken to Review Charts
Accuracy Distribution Between Review Groups |
150
100
:
L
75 : '
— * L]
g | . ] .
> Review Group 2 | Review Group
g ‘ Al-alone 3 = Human-alone
g % EE Human-alone e 3 Human+
<
= B Human+Al
=
@] 50
25
L]
*
0 - L
0
Al-alone Human-alone Human+Al Human-alona Human+Al
Arm

Accuracy is greatest in the Human+Al arm No difference in timeliness of prescreening

Parikh RB, et al. 2024 ASCO Annual Meeting. https://cdn.prod.website-files.com/6746cd1b28e0930a369c6b16/67abch9a6d2b96858blellc2 ASCO_Human-NLP%20Workflows%20T0%20lmprove%20Cancer%20Trial%20Prescreening_Parikh_5.15.24_3PM.pptx.pdf. Accessed April 2025.



https://cdn.prod.website-files.com/6746cd1b28e0930a369c6b16/67abcb9a6d2b96858b1e11c2_ASCO_Human-NLP%20Workflows%20To%20Improve%20Cancer%20Trial%20Prescreening_Parikh_5.15.24_3PM.pptx.pdf

Criteria-Specific Accuracy

Accuracy (%)

Criteria p-value
Human- Alone Human + Al Al-Alone
Was Blomarker 84.6 93.2 88.1 <0.001*
_ y Tested?

Biomarker Categorical Value 67.9 32.5 <0.001*
Interpretation 80.8 35.7 <0.001*

Cancer Type 86.9 73.3 0.797

Stage Group 71.7 57.0 0.573
Neoplasm |M Stage 43.9 <0.001*
N Stage 50.5 <0.001*
T Stage 56.3 <0.001*

Outcome 23.7 0.004*

Response 47.1 0.195

Other ECOG Status 84.7 0.096
Medication Concept 89.0 0.915

ECOG, Eastern Cooperative Oncology Group.

Vaccaro M, et al. Nat Hum Behav. 2024;8:2293—-2303.
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Poll

You have just seen 2 examples of clinical decision support in oncology

practice. In your oncology pharmacy practice, which of the following Al
applications would be most valuable to implement?

a. Automated chemotherapy dosing recommendations based on
patient-specific factors

b. Prediction of adverse events from specific drug combinations

c. Clinical trial matching for patients with rare genomic
alterations

d. Medication adherence tracking and personalized interventions
e. None of the above
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Principles of Trustworthy Al

.s“us:worthy Al Fra

e
Qo

Fair and
impartial

CHAI Releases
Recommendations for

Trustworthy Al in Health

Safe and secure

.f\ 2025 NcoDA
\=" SPRING

Deloitte. https://www2.deloitte.com/us/en/pages/deloitte-analytics/solutions/ethics-of-ai-framework.html. Accessed April 2025.

.

Coalition for Health Al (CHAI). https://chai.org/wp-content/uploads/2024/05/blueprint-for-trustworthy-ai_V1.0-2.pdf. Accessed April 2025.



Explainability

Va « Cardiomegaly
R/ N7 + Confidence 78%

e Unanswered
« How are the predictions made?
I * Why is the prediction correct?
* Why is the prediction
incorrect?
+ Which features affected this
prediction?

Inference

NG

The lungs exhibit
cardiomegaly with a
large silhouette of
the heart.

Example Images

/ Trained Model Without Explainability With Explainability \
NRE / Prediction Text ' Visualizations

it

Example Models

Increased heart
silhouette size?

A J A 4
@rdiomegalD C Other /)

Nazir S, et al. Comput Biol Med. 2023;156:106668.
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When explainability goes wrong...

Prompt:

Wirite a radiology report for this image as an expert radiologist..

GPT-4V:

Report:

Date: 6/25/2021

Study Type: Chest CT

Subject: 42-year-old male

Findings: The chest CT images demonstrate a nodular opacity in the left upper lobe, measuring approximately 1.3 cm in diameter. The
opacity appears to have spiculated margins and is located adjacent to the pleura. There is no evidence of mediastinal or hilar

lymphadenopathy. A 2025 NCODA
Impression: The findings are concerning for a primary lung malignancy. Further evaluation with a biopsy is recommended to confirm the (‘ ) gﬁﬁ\iﬁ&
diagnosis. l

® FORUM

Yang et al, arXiv, 2023, “The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision)”



When explainability goes wrong...

Prompt:
Write a radiology report for this image as an expert radiologist..

GPT-4V:

Report:

Date: 6/25/2021

Study Type: Chest CT
Subject: 42-year-old male

Findings: The chest CT images demonstrate a nodular opacity in the left upper lobe, jmeasuri i in diameter.fThe
opacity appears to have spiculated margins and is located adjacent to the pleura. There isjno evidence of mediastinal or hila

lymphadenopathy.

Impression: The findings are concerning for a primary lung malignancy. Further evaluation with a biopsy is recommended to confirm the

diagnosis.

Evaluation from Professionals: A

Correct study type and identification ( )‘ ﬁu%?ur;‘fﬁgﬁﬁ
Mensions nodule but in the left rather than in the right. \d SPRING
Gives measurements (hallucination) ) Z l’ FORUM

Yang et al, arXiv, 2023, “The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision)”



Reliability in Al Models

Refreshed models

Static models

Al model retraining maintains accuracy

? Al models expectedly
perform worse over
time
= =
3 E
o s
3 3
o o
= =
- |
Time

Time

Proactive monitoring can prevent
expected performance drift O wi
¢4 FORUM

Siva S. https://medium.com/data-science/stoend-to-end-data-science-life-cycle-6387523b5afc. Accessed April 2025.



Performance Drift in Mortality Prediction Al
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* Parikh et al, JAMIA, 2023. TPR = True positive rate

* Al models notably
“drifted” during
the COVID
pandemic

* Many of these
models failed to
return to normal
until well into the
pandemic
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Bias in Al Algorithms

« Biases in Electronic Health Record Data due to Processes within the Healthcare
System: Retrospective Observational Study

o Biased data generation - biased algorithms

« Health Care Segregation, Physician Recommendation, and Racial Disparities in
BRCA1/2 Testing Among Women With Breast Cancer

o Likelihood of genetic testing among African-American women with breast cancer

Analysis Odds Ratio (95% CI)
Overall 0.40 (0.34-0.48)
Adjusted for mutation risk 0.66 (0.53-0.81)
Adjusted for physician recommendation 0.76 (0.57-1.02)

“The presence of a laboratory test order, regardless of any other

Information about the test result, has a significant association
(P<0.001) with the odds of survival in 233 of 272 (86%) tests. ”
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*  McCarthy et al, J Clin Oncol, 2016; 34 (22): 2610-2618; Agniel et al, BMJ, 2018;361:k1479



Can Al Mitigate Disparities?

Pre-intervention, % Post-intervention, % Absolute
Percentage-

point Difference

Non-Hispanic 3.9 (58/1494) 14.2 (201/1417)

White
Non-Hispanic 3.6 (17/467) 16.9 (69/408) 13.3

Black
Other* 1.2 (2/164) 19.5 (34/408) 18.3

In a trial of a machine learning-based nudge to perform end-of-life

conversations, there was a significantly higher impact for non-White
minorities

* 2025 NCODA
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e Parikh et al, JAMA Onc, 2023



Poll

Which barrier do you see as most significant to implementing Al in oncology
pharmacy practice?

a.Cost of implementation and maintenance

b.Integration with existing electronic health record systems
c.Liability concerns and unclear accountability

d.Lack of pharmacy-specific Al training and expertise
e.Patient/provider acceptance of Al recommendations
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SUMMARY

« Alin Oncology: Al applications can be assistive or autonomous, with most
current applications being assistive

« Proven Use Cases: Al systems have demonstrated value in decision support
and augmenting human processes

« Core Challenges: Key issues include explainability limitations, algorithmic
bias, performance drift over time, and variable accuracy across different cancer

types

« Path Forward: Responsible implementation requires proactive monitoring,
comprehensive model documentation, human-in-the-loop workflows, and
transparent integration into clinical processes

Transforming Oncology Care Through Medically Integrated Collaboration ,’
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The Future of Oncology:
How Al Will Shape the Next Decade
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