

Pivotal ARROS-1 Efficacy and Safety Data: Zidesamtinib in TKI Pretreated Patients with Advanced/Metastatic ROS1+ NSCLC

Alexander E. Drilon¹, Byoung Chul Cho², Jessica J. Lin³, Benjamin J. Solomon⁴, Chia-Chi Lin⁵, Adrianus Johannes de Langen⁶, Enriqueta Felip⁷, Joel W. Neal⁸, Stephen V. Liu⁹, Ross Andrew Soo¹⁰, Steven Kao¹¹, Jürgen Wolf¹², Geoffrey Liu¹³, Christina S. Baik¹⁴, Christophe Dooms¹⁵, Misako Nagasaka¹⁶, A.J. van der Wekken¹⁷, D. Ross Camidge¹⁸, Tatsuya Yoshida¹⁹, Chien-Chung Lin²⁰, Gee-Chen Chang²¹, Myung-Ju Ahn²², Jessica R. Bauman²³, Shirish Gadgeel²⁴, Antonio Calles²⁵, Elvire Pons-Tostivint²⁶, Daniel Haggstrom³⁴, Manoj Samant³⁵, Junwu Shen³⁵, Vivek A. Upadhyay³⁵, Benjamin Besse³⁶

1Memorial Sloan Kettering Cancer Center and Weill Cornell Medical Center, New York, NY, USA; Peter MacCallum Cancer Centre, New York, NY, USA; National Taiwan University Hospital, Boston, MA, USA; Stanford Cancer Institute, Palo Alto, CA, USA; Stanford Cancer Cancer Center, Washington, D.C., USA; 15 Department of Respiratory Diseases, University Hospital, Toronto, ON, Canada; 14 Fred Hutchinson Cancer Center, Washington, D.C., USA; 15 Department of Respiratory Diseases, University Hospital, Köln, Germany; 18 Princess Margaret Hospital, Educen, Belgium; 16 University Hospital, Educen, Belgium; 16 University Hospital, Educen, University Medical Center, Orange, CA, USA; 17 Department of Respiratory Diseases, University Hospital, Educen, Belgium; 16 University Hospital, Educen, Belgium; 18 University Hospital, Educen, University Hospital, Educen, Belgium; 19 Univ Aurora, CO, USA; 19 National Cancer Center, Poiladelphia, Pa, USA; 24 Henry Ford Cancer Center, Philadelphia, Pa, USA; 24 Henry Ford Cancer Center, Detroit, MI, USA; 25 Medical Oncology, Department of Medicine, Samsung Medical University Hospital, Tokyo, Japan; 20 National Cheng Kung University School of Medicine, Samsung Medical Oncology, Department of Medical University Hospital, Tokyo, Japan; 20 National Cheng Kung University Hospital, Tokyo, Japan; 21 National Cheng Kung University Hospital, Tokyo, Japan; 22 National Cheng Kung University Hospital, Tokyo, Japan; 23 National Cheng Kung University Hospital, Tokyo, Japan; 24 National Cheng Kung University Hospital, Tokyo, Japan; 25 National Cheng Kung University Hospital, Tokyo, Japan; 26 National Cheng Kung University Hospital, Tokyo, Japan; 26 National Cheng Kung University Hospital, Tokyo, Japan; 27 National Cheng Kung University Hospital, Tokyo, Japan; 28 National Cheng Kung University Hospital, Tokyo, Japan; 28 National Cheng Kung University Hospital, Tokyo, Japan; 29 National Cheng Kung University Hospital, Tokyo, Japan; 29 National Cheng University Hospital, Tokyo, Japan; 20 National Che Oncology, University Hospital of Nantes, Nantes, France; 27 National Cancer Centre Singapore; 28 Sarah Cannon Research Institute Oncology Partners, Nashville, TN, USA; 36 Institute Oncology Istituto Europeo di Oncology Istituto Europeo di Oncology Istituto Europeo di Oncology Partners, Nashville, TN, USA; 36 Institut Gustave Roussy, Villejuif, France

Any prior ROS1 TKI (range 1 – 4)

± chemotherapy

44% (51/117)

[34, 53]

1% (1/117)

^a Prior crizotinib only ± chemotherapy: ORR = 68% (19/28). Prior entrectinib only ± chemotherapy: ORR = 33% (9/27).

DURATION OF RESPONSE

± chemotherapy

93% [74, 98]

93% [74, 98]

93% [74, 98]

± chemotherapy

84% [71, 92]

78% [62, 88]

62% [28, 84]

BACKGROUND

- Zidesamtinib is an investigational ROS1 TKI designed to be highly selective, have activity against diverse ROS1 fusions and ROS1 resistance mutations, be brain-penetrant, and avoid TRK inhibition
- ARROS-1 is a global, single-arm, first-in-human Phase 1/2 clinical trial of zidesamtinib in advanced ROS1-positive (ROS1+) NSCLC and other solid tumors
- Pivotal data for TKI pre-treated ROS1+ NSCLC and preliminary data for TKI-naïve ROS1+ NSCLC are presented

ARROS-1 STUDY DESIGN & POPULATIONS

- As of the data cut-off date of March 21, 2025, 514 patients with any ROS1+ solid tumor had been enrolled across Phase 1 and 2
- The safety population included 432 patients with advanced ROS1+ NSCLC who received zidesamtinib 100 mg QD
- The efficacy population included 117 ROS1 TKI pre-treated patients with measurable disease by BICR and ≥ 6 months duration of response follow-up
- The TKI-naïve cohort included 35 patients with measurable disease by BICR treated by August 31, 2024

PHASE 1: Zidesamtinib dose escalation (25 – 150 mg QD) in ROS1 TKI pre-treated patients with advanced *ROS1*+ solid tumors

PHASE 2: Zidesamtinib 100 mg QD (RP2D)				
ARROS-1 PHASE 2 PATIENT POPULATION	PRIOR ROS1 TKI	PRIOR CHEMO/I-O		
<i>ROS1</i> + NSCLC	ROS1 TKI-naïve ^a	≤1		
	4 - day DOC4 TIM h	None		
	1 prior ROS1 TKI b	1 °		
	≥ 2 Prior ROS1 TKIs d	≤1		
Any ROS1+ Solid Tumor e	Any	Any		

PHASE 2 OBJECTIVES

- Secondary: Additional efficacy measures (DOR, TTR, CBR, PFS, OS), intracranial activity, overall safety and tolerability, confirmation of PK profile, PROs

Patient Populations Data cut-off: March 21, 2025 **Total Enrolled: N = 514** Any *ROS1*+ solid tumor, any dose Phase 1 + Phase 2 pooled **Pivotal Safety Population: N = 432** Advanced ROS1+ NSCLC Received zidesamtinib at 100 mg QD **Preliminary Data Pivotal Efficacy Population ROS1 TKI Pre-Treated** with measurable disease with measurable Treated by May 31, 2024 Treated by (≥ 6 months DOR follow up) August 31, 2024 n = 117

▲ Figure 1. ARROS-1: A Global First-in-Human Phase 1/2 Clinical Trial of Zidesamtinib in Advanced ROS1+ NSCLC and Other Solid Tumors (NCT05118789) Zidesamtinib is an investigational product and has not been approved by the FDA or any other health authority. ^a Open for enrollment; ^b Either crizotinib or entrectinib; ^c Platinum-based chemotherapy with or without immunotherapy; ^d With initial TKI of either crizotinib or entrectinib;

^e Exploratory cohort, currently enrolling; includes adolescents and patients with NSCLC who do not qualify for any of the other cohorts.

PATIENT CHARACTERISTICS & TREATMENT HISTORY

- Patients had received a median of 2 prior lines of therapy (range 1-11)
- -50% (58/117) had received ≥ 2 prior ROS1 TKIs, including 93% (54/58) who had received prior lorlatinib, repotrectinib, or taletrectinib; and 53% (62/117) had received prior chemotherapy
- 49% (57/117) had active CNS disease, including cases of disease progression following treatment with the brain-penetrant TKIs entrectinib, lorlatinib, repotrectinib and/or taletrectinib
- 36% (42/117) had a secondary *ROS1* mutation, with a secondary *ROS1* G2032R mutation in 26 patients

Patient characteristic	ROS1 TKI pre-treated ^a pivotal efficacy population N = 117
Age, median (range)	57 (31 – 83)
Female	66 (56%)
Never smoker	80 (68%)
Geographic Region	
Asia Pacific	30 (26%)
Europe	38 (32%)
North America	49 (42%)
ECOG PS	
0	45 (38%)
1	72 (62%)
Active CNS disease b	57 (49%)
Secondary <i>ROS1</i> mutation ^c	42 (36%)
G2032R	26 (22%)

Treatment history	ROS1 TKI pre-treated ^a pivotal efficacy population N = 117
Prior anticancer therapy, median (range)	2 (1 – 11)
Prior chemotherapy	62 (53%)
Prior ROS1 TKIs ± chemotherapy	
1 prior (crizotinib or entrectinib)	55 (47%)
Crizotinib	28/55 (51%)
Entrectinib	27/55 (49%)
1 prior (repotrectinib or taletrectinib)	4 (3%)
≥ 2 prior	58 (50%)
Lorlatinib, repotrectinib, or taletrectinib	54/58 (93%)
Lorlatinib	43/58 (74%)
Repotrectinib	15/58 (26%)
Taletrectinib	5/58 (9%)

▲ Table 1. ARROS-1 Patient Population

All data shown as n (%) unless otherwise specified. a Includes 4 patients with other oncogenic driver(s) in addition to ROS1. By BICR; includes patients with untreated CNS lesions and patients with prior disease progression on the brain-penetrant TKIs entrectinib, lorlatinib, repotrectinib, and/or taletrectinib. cROS1 mutations as per local or central testing of blood (ctDNA) or tissue.

OBJECTIVE RESPONSE RATE, DURABILITY OF RESPONSE, AND PROGRESSION-FREE SURVIVAL

Advanced ROS1+ NSCLC

Advanced ROS1+ NSCLC

% ≥ 6 months [95% CI]

% ≥ **12** months [95% CI]

% ≥ 18 months [95% CI]

RECIST 1.1 by BICR

ORR, % (n/N)

[95% CI]

CR, % (n/N)

- Among patients with any prior ROS1 TKI, the ORR by BICR was 44% (51/117)
- Among patients with 1 prior TKI of crizotinib or entrectinib, the ORR was 51% (28/55)
- Responses were also observed in patients previously treated with:
- ≥2 prior ROS1 TKIs ± chemotherapy: ORR = 38% (22/58; 95% CI: 26, 52)
- Prior repotrectinib: ORR = 47% (8/17), DOR range 3.5 to 17.2 months
- Prior taletrectinib: ORR = 43% (3/7), DOR range 5.2 to 7.0+ months

► Table 2 & Figure 2. Radiographic Tumor Response Across Previously Treated Patients with Advanced ROS1+ NSCLC. Responses were observed after either prior TKI of crizotinib or entrectinib and in patients that received prior chemotherapy.

- Among the overall ROS1 TKI pre-treated population, the DOR rate was 84% at 6 months, 78% at 12 months, and 62% at 18 months; respective PFS rates were 57%, 48%, and 40%
- Among patients with 1 prior TKI of crizotinib or entrectinib, the DOR rate was 93% at 6, 12, and 18 months; respective PFS rates were 70%, 68%, and 68%
- In patients that received prior crizotinib only, there were no progression events among responders (DOR range: 7.3+ to 23.2+ months); the PFS rate was 89% [95% CI: 70, 96] at 6, 12, and 18 months with median not reached
- In patients that received ≥ 2 prior ROS1 TKIs ± chemotherapy, the DOR rate was 71% [95% CI: 46, 86] at 6 months and 56% [95% CI: 29, 76] at 12 months
- Median DOR for each group continues to

► Figure 3 & Figure 4. Duration of Response and Progression-

^a Any prior ROS1 TKI: Emerging median DOR of 22 months [95% CI: 17, NE] continues to mature. Median PFS was 9.7 [5.5, NE] months with median follow-up of 11.1 months (range 0.2 – 25.6). **b 1 prior** ROS1 TKI (crizotinib [C] or entrectinib [E]): Emerging median DOR of 22 months [95% CI: 22, NE] and median PFS of 23.8 months [95% CI: 23.8, NE] continue to mature; median follow-up was 11.8 months (range 1.2 – 25.6).

blood CPK increased, fatigue, and dyspnea

(> 2 patients) for pneumonia (n = 3)

Grade ≥ 3 Any Grade Preferred or grouped term (N = 432)(N = 432)Peripheral edema 0.7% 36% Constipation 17% 0% **Blood CPK increased** 3.5% 0.7% Fatigue b 3.0%

- Includes terms peripheral edema, peripheral swelling, edema, generalized edema.
- b Includes terms fatigue, asthenia, malaise.
- Includes terms dyspnea, dyspnea exertional, orthopnea

> Data cut-off date: March 21, 2025

SAFETY

Disclaimer: Content originally presented at the IASLC 2025 World Conference on Lung Cancer (WCLC 2025)

Patients received ≥ 1 dose of zidesamtinib at 100 mg QD with median duration of exposure of 5 months (range 0 – 32).

TEAEs that occurred in ≥ 15% of patients comprised peripheral edema, constipation,

 Dose reductions due to TEAEs occurred in 10% (43/432) of patients, most commonly (> 2 patients) for peripheral edema (n = 8), blood CPK increased (n = 4), peripheral

• Discontinuations due to TEAEs occurred in 2% (10/432) of patients, most commonly

The only TRAE in ≥ 15% of patients was peripheral edema (29%)

sensory neuropathy (n = 4), arthralgia (n = 3), and paresthesia (n = 3)

Data pooled for patients in the Phase 1 or Phase 2 portion of ARROS-1 with a data cut-off of March 21, 2025.

► Table 7. All TEAEs in ≥ 15% of Patients Treated with Zidesamtinib 100 mg QD (N = 432).

> Acknowledgments: We thank the participating patients and their families, the ARROS-1 study team, and the study investigators and staff.

Abbreviations: BICR, blinded independent central review; C, crizotinib; CBR, clinical benefit rate; CI, confidence interval; CNS, central nervous system; CPK, creatine phosphokinase; CR, complete response; DOR, duration of response; E, entrectinib; ECOG PS, Eastern Cooperative Oncology Group performance status; FDA, United States Food and Drug Administration; IC, intracranial; I-O, immuno-oncology; NE, not estimable; NSCLC, non-small cell lung cancer; ORR, objective response rate; OS, overall survival; PD, progressive disease; PFS, progression-free survival; PK, pharmacokinetics; PR, partial response; PRO, patient reported outcome; QD, once daily; RECIST 1.1, Response Evaluation Criteria in Solid Tumors version 1.1; RP2D, recommended phase 2 dose; SD, stable disease; TEAE, treatment-emergent adverse event; TKI, tyrosine kinase inhibitor; TRAE, treatment-related adverse event; TRK, tropomyosin-related kinase; TTR, time to response.

ACTIVITY IN KEY SUBGROUPS

ARROS-1 STUDY RESULTS

1 prior ROS1 TKI (crizotinib or entrectinib)

± chemotherapy

51% (28/55)

[37, 65]

2% (1/55)

PROGRESSION-FREE SURVIVAL

Any prior ROS1 TKIs

± chemotherapy

57% [47, 66]

48% [38, 57]

40% [24, 55]

1 prior ROS1 TKI

± chemotherapy

70% [56, 81]

68% [53, 79]

68% [53, 79]

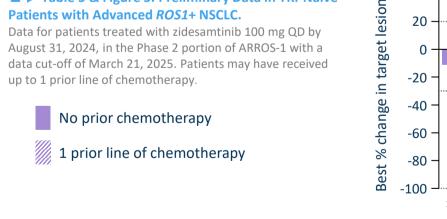
• Responses to zidesamtinib were observed in patients with the ROS1 G2032R resistance mutation and in patients with CNS disease

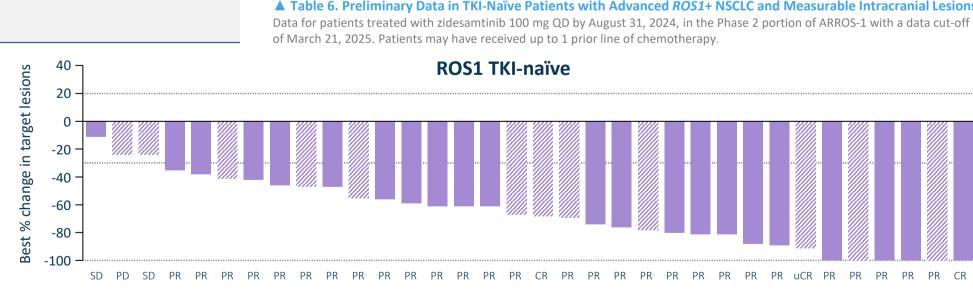
ROS1 G2032R resistance mutation				
Advanced ROS1+ NSCLC Analysis by BICR	Any prior ROS1 TKI ± chemotherapy	1 prior ROS1 TKI (crizotinib or entrectinib) ± chemotherapy ^a		
ORR, % (n/N) [95% CI]	54% (14/26) [33, 73]	83 % (5/6) [36, 100]		
% DOR ≥ 6 months [95% CI] ^b	79 % [47, 93]	80% ^c [20, 97]		
% DOR ≥ 12 months [95% CI] b	60% [28, 81]	80% ° [20, 97]		

Responses were also observed in patients with:

One progression event among responders

- ROS1 G2032R mutation following ≥ 2 prior ROS1 TKIs ± chemotherapy, including lorlatinib or repotrectinib
- Other ROS1 resistance mutations, including G1957A, L1982V, S1986F, F2004C/V, G2032K, and D2033N
- Patients received zidesamtinib as their first TKI designed with activity against ROS1 G2032R. Analyses of DOR based on Kaplan-Meier estimates.
- Measurable CNS lesions by BICR at baseline Advanced ROS1+ Any prior ROS1 TKI ± Prior crizotinib only ± chemotherapy chemotherapy Analysis by BICR **IC-ORR,** % (n/N) **48%** (27/56) ³ **85%** (11/13) [95% CI] [35, 62] [55, 98] **IC-CR**, % (n/N) **20%** (11/56) **54%** (7/13) % IC-DOR ≥ 6 months 91% ⁹ [56, 91] [51, 99] [95% CI] ^k **71%** % IC-DOR ≥ 12 months 91% ^c [46, 87][95% CI] ^k [51, 99]
- CNS responses also observed in patients who had received ≥ 1 prior brainpenetrant TKI, including prior entrectinib, lorlatinib, repotrectinib, or taletrectinib: IC-ORR: 37% (16/43 a; [95% CI: 23, 53]), including 4 IC-CRs
- No CNS progression was observed among patients who entered the study without brain metastases at baseline per BICR
- Includes 2 unconfirmed intracranial PR. Analyses of DOR based on Kaplan-Meier estimates.


One CNS progression event among CNS responders (n=11).


▲ Table 3 & Table 4. Activity in Patients with ROS1 G2032R Resistance Mutation and Measurable CNS lesions by BICR at Baseline.

PRELIMINARY DATA IN TKI-NAÏVE PATIENTS

- The ORR was 89% (31/35), and the 12-month DOR rate was 96%
- An intracranial-ORR of 83% was observed in 6 patients with measurable intracranial lesions, including 4 intracranial CRs
- Intracranial-DOR ranged from 4.6 to 11.1 months, with no CNS progression among intracranial responders

TKI-naïve advanced <i>ROS1</i> + NSCLC Analysis by BICR	Response-evaluable n = 35	TKI-naïve advanced <i>ROS1</i> + NSCLC Analysis by BICR	Measurable intracranial lesions n = 6
ORR, % (n/N)	89% (31/35)	IC-ORR, % (n/N)	83% (5/6)
CR, % (n/N)	9 % (3/35) ^a	IC-CR, % (n/N)	67% (4/6)
% DOR ≥ 6 months [95% CI] b	96% [76, 99]	IC-DOR	No CNS progression events among intracranial responders
% DOR ≥ 12 months [95% CI] b	96% [76, 99]		
DOR range	1.9+ to 13.9+ months	IC-DOR range	4.6+ to 11.1+ months
 Includes 1 unconfirmed CR following confirmed Analyses of DOR based on Kaplan-Meier esting 			Advanced ROS1+ NSCLC and Measurable Intracranial Lesions gust 31, 2024, in the Phase 2 portion of ARROS-1 with a data cut-off ine of chemotherapy.
A ► Table 5 & Figure 5. Preliminary Data in TKI-Naïve Patients with Advanced ROS1+ NSCLC. Data for patients treated with zidesamtinib 100 mg QD by 40 7 20		ROS1 TKI-naïve	

ARROS-1 SUMMARY

- In the pivotal dataset for TKI pre-treated patients with advanced ROS1+ NSCLC, zidesamtinib demonstrated a clinical profile consistent with its preclinical design goals:
- Durable activity, including in heavily pre-treated patients that have exhausted available options (including prior repotrectinib or taletrectinib) and patients with the ROS1 G2032R resistance mutation
- Durable activity in a population of patients receiving 1 prior ROS1 TKI of crizotinib or entrectinib. This population was distinct from those studied with other approved ROS1 TKIs; 51% of patients had received prior crizotinib or 49% prior entrectinib, and approximately half had also received prior chemotherapy
- Durable intracranial responses, including in patients who previously received the brain-penetrant TKIs entrectinib, lorlatinib, repotrectinib, or taletrectinib
- Generally well-tolerated with low rates of dose reduction (10%) and treatment discontinuation (2%), and a safety profile consistent with its ROS1-selective, TRK-sparing design
- Encouraging preliminary data in a TKI-naïve population support ongoing investigation in the front-line setting

