Characteristics of long-term survivors and impact of dose adjustments in first-line NALIRIFOX treatment for metastatic pancreatic ductal adenocarcinoma: post hoc analyses of NAPOLI 3

Vincent Chung,¹ Anjan Patel,² Yutong Liu,³ Mark Kochenderfer,⁴ Nagendra Natarajan,⁵ Grant R Williams,⁶ Ashley Laursen,ˀ Whitney Rhodes,³ Andy Surinach,³ Li Zhang,ˀ Jia Li,ˀ Fiona Maxwell,⁶ Alice Zervoudakis,⁶ Eileen M O'Reilly,⁶ Zev A Wainberg¹⁰

¹City of Hope, Duarte, CA, USA; ²Florida Cancer Specialists, Sarasota, FL, USA; ³Genesis Research, Hoboken, NJ, USA; ⁴Blue Ridge Cancer Care, Roanoke, VA, USA; ⁵Nebraska Cancer Specialists, Omaha, NE, USA; ¹Ipsen, Cambridge, MA, USA; ¹Ipsen, London, UK; ¹Ipsen, London, UK; ¹Ipsen, Cancer Center, New York, NY, USA; ¹Ipsen, California, Los Angeles, CA, USA

To download the poster, please scan the Quick Respons (QR) code.

QR code are for personal use only and may not be reproduced without permis from the author of this poster.

For further information, please send your question(s) to: Ashley Laursen (ashley.laursen@ipsen.com).

KEY LEARNINGS

- In NAPOLI 3, among patients from North America treated with NALIRIFOX who had long-term survival (OS ≥ 18 months), a substantial proportion had ≥ 3 metastatic sites at baseline, but they otherwise had a good clinical profile.
- Across all patients treated with NALIRIFOX at North American centers (including long-term survivors), tolerability-guided dose modifications did not adversely affect OS.

BACKGROUND

- NALIRIFOX (liposomal irinotecan in combination with 5-fluorouracil/ leucovorin plus oxaliplatin) is an approved option for first-line (1L) treatment of metastatic pancreatic ductal adenocarcinoma (mPDAC).¹⁻³
- Approval was based on the results of the phase 3 NAPOLI 3 trial (NCT04083235) in which NALIRIFOX significantly improved survival outcomes compared with nab-paclitaxel plus gemcitabine (Gem+NabP) in patients with previously untreated mPDAC.⁴
- In NAPOLI 3, related treatment-emergent adverse events led to dose reductions in 198 patients (54%) who received NALIRIFOX, and in 184 patients (49%) who received Gem+NabP.⁴ At the time of the primary analysis of NAPOLI 3, the impact of dose modifications on overall survival (OS) was not evaluated.
- In addition, a subgroup of patients in NAPOLI 3 achieved long-term survival (≥ 18 months);⁵ the characteristics of this subgroup are of interest to guide informed treatment selection.

OBJECTIVE

• This *post hoc* analysis of the North American population from NAPOLI 3 aims to describe the characteristics and dosing patterns of long-term survivors treated with NALIRIFOX and to explore the impact of dose reductions of liposomal irinotecan and/or oxaliplatin dose reductions on OS with NALIRIFOX.

CONCLUSIONS

- This *post hoc* analysis of patients treated with NALIRIFOX at North American centers in NAPOLI 3 found the following.
- A substantial proportion of long-term survivors had
 ≥ 3 metastatic sites at baseline, but they otherwise had a good clinical profile: younger (vs typical mPDAC diagnosis⁶), few tumors in the head or tail of the pancreas, a good performance status and reasonably low CA 19-9 levels.
- The majority of long-term survivors also experienced dose reductions of liposomal irinotecan and/or oxaliplatin.
 These patients had prolonged exposure and high cumulative doses of both drugs.
- More widely, in the North American NALIRIFOX safety population, the occurrence of dose modifications was associated with prolonged OS.
- The results suggest that tolerability-guided liposomal irinotecan or oxaliplatin dose reductions do not adversely affect OS among patients with mPDAC receiving NALIRIFOX treatment.

METHODS

Study design and patients

- NAPOLI 3 was an open-label, randomized, phase 3 trial conducted at 187 sites in 18 countries worldwide.⁴
- Patients with mPDAC (N = 770) were randomized 1:1 to receive 1L treatment with NALIRIFOX or Gem+NabP (Figure 1).
- These *post hoc* analyses included patients treated with NALIRIFOX at North American centers participating in NAPOLI 3 (70 sites; 120 patients).
- Baseline characteristics and NALIRIFOX dosing patterns for long-term survivors were evaluated in the subgroup of the North American intention-to-treat (ITT) population that survived for ≥ 18 months after NALIRIFOX initiation.
- The impact of dose reduction of liposomal irinotecan or oxaliplatin was assessed in the North American NALIRIFOX safety population (patients who received ≥ 1 dose of study treatment).

Statistical analysis

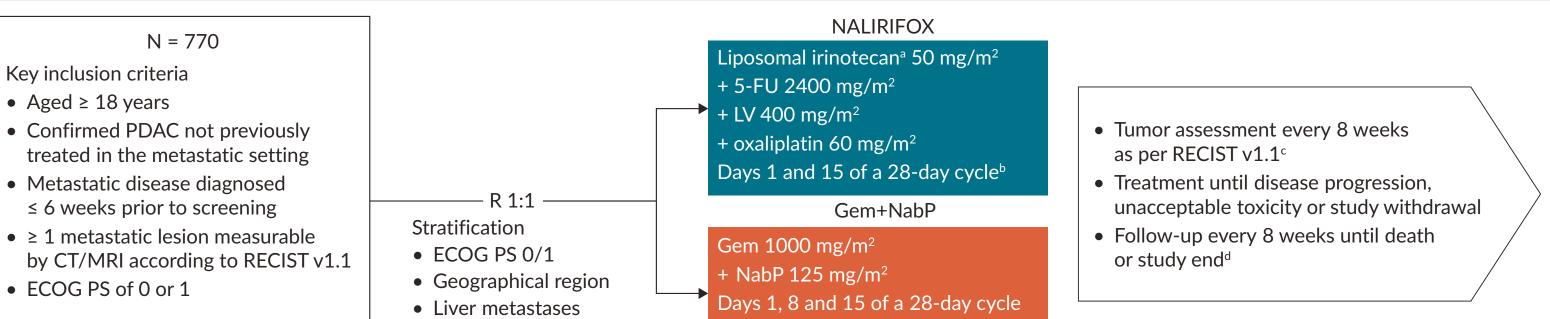
• All analyses were purely descriptive; no comparisons or statistical tests were performed.

RESULTS

Population

- Of the 120 patients randomized to receive NALIRIFOX at North American centers (ITT population), 15 (12.5%) had an OS ≥ 18 months (long-term survivors).
- Of the 112 patients in the North American NALIRIFOX safety population,
 63 (56.3%) had a reduction in their liposomal irinotecan dose and 72 (64.3%) in their oxaliplatin dose.
- Demographic and clinical characteristics are reported below for long-term survivors; characteristics for the North American NALIRIFOX safety population are included in the **Supplementary Materials**, stratified by dose modification status (any/none) (**Supplementary Table S1**; please scan QR code).

Characteristics of long-term survivors


- The median age of the long-term survivor subgroup was 61.0 (interquartile range [IQR]: 49.0–70.5) years, 46.7% were female, 66.7% were white (Table 1)
- At baseline, 53.3% had a baseline Eastern Cooperative Oncology Group Performance Status (ECOG PS) score of 0 and had the main pancreatic tumor located in the body of the pancreas; median carbohydrate antigen 19-9 (CA 19-9) level was 166.8 (IQR: 32.7–1728.4) U/mL, and most had metastatic disease at diagnosis (86.7%) (Table 1).
- 53.3% of patients had ≥ 3 metastatic sites, most commonly in the liver (66.7% of patients) (Table 1).
- Most long-term survivors (73.3%) were UGT1A1*28 non-homozygous (Table 1).

Overall survival

Long-term survivors

• Median OS (mOS) for the North American ITT population was 11.1 (IQR: 5.6–14.6) months; among the long-term survivor subgroup, mOS was 19.5 (IQR: 18.8–22.6) months (Figure 2).

Figure 1. NAPOLI 3 study design

^aDose expressed as irinotecan free base equivalent. ^bAdministered sequentially as a continuous infusion over 46 hours (dose delays and oxaliplatin discontinuation were permitted). ^cUntil progressive disease.

^dThe study was complete once all patients had discontinued the study treatment or ≥ 543 OS events had occurred.

5-FU, 5-fluorouracil; CT, computed tomography; ECOG PS, Eastern Cooperative Oncology Group Performance Status; Gem, gemcitabine; LV, leucovorin; MRI, magnetic resonance imaging; NabP, nab-paclitaxel; NALIRIFOX, liposomal irinotecan + 5-fluorouracil/leucovorin + oxaliplatin; OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; R, randomization; RECIST, Response Evaluation Criteria in Solid Tumors.

Table 1. Baseline demographics and disease characteristics of long-term survivors treated with NALIRIFOX at North American centers in NAPOLI 3

Baseline characteristic	OS ≥ 18.0 months (n = 15)	ITT (n = 120)	
\ge			
Median (IQR), years	61.0 (49.0-70.5)	65.0 (59.0-71.0)	
< 65 years, n (%)	8 (53.3)	56 (46.7)	
≥ 65 years, n (%)	7 (46.7)	64 (53.3)	
ex, n (%)			
Female	7 (46.7)	49 (40.8)	
lace, n (%)			
Asian	1 (6.7)	4 (3.3)	
Black or African American	2 (13.3)	11 (9.2)	
White	10 (66.7)	99 (82.5)	
Multiple	O (O)	1 (0.8)	
Other	2 (13.3) 3 (2.5)		
COG PS score, n (%)			
0	8 (53.3)	46 (38.3)	
1	7 (46.7) 74 (61.7)		
tage at diagnosis, n (%)			
Metastatic	13 (86.7)	105 (87.5)	
Resectable	O (O)	5 (4.2)	
Locally advanced	2 (13.3)	8 (6.7)	
Borderline resectable	0 (0) 2 (1.7)		
iver metastases in eCRF, n (%)			
No	5 (33.3) 26 (21.7)		
Yes	10 (66.7)	94 (78.3)	

Baseline characteristic	OS ≥ 18.0 months (n = 15)	ITT (n = 120)	
Number of metastatic sites, n (%	6)		
1	3 (20.0)	34 (28.3)	
2	4 (26.7)	39 (32.5)	
≥ 3	8 (53.3)	47 (39.2)	
Metastatic site, n (%)			
Liver	6 (40.0)	60 (50.0)	
Liver, lung	4 (26.7)	33 (27.5)	
Lung	3 (20.0)	12 (10.0)	
Unknown	2 (13.3)	15 (12.5)	
Main pancreatic cancer tumor lo	ocation, n (%)		
Head	5 (33.3)	48 (40.0)	
Body	8 (53.3)	38 (31.7)	
Tail	2 (13.3)	33 (27.5)	
Unknown	0 (0)	1 (0.8)	
CA 19-9, U/mL			
Median (IQR)	166.8 (32.7-1728.4)	2948.8 (153.8-8000.0)	
UGT1A1*28 allele status, n (%)			
Homozygous	3 (20.0)	13 (10.8)	
Non-homozygous	11 (73.3)	104 (86.7)	
Missing	1 (6.7)	3 (2.5)	
CA 19-9, carbohydrate antigen 19-9; EC	COG PS, Eastern Cooperative On	cology Group Performance	
ODE I	100		

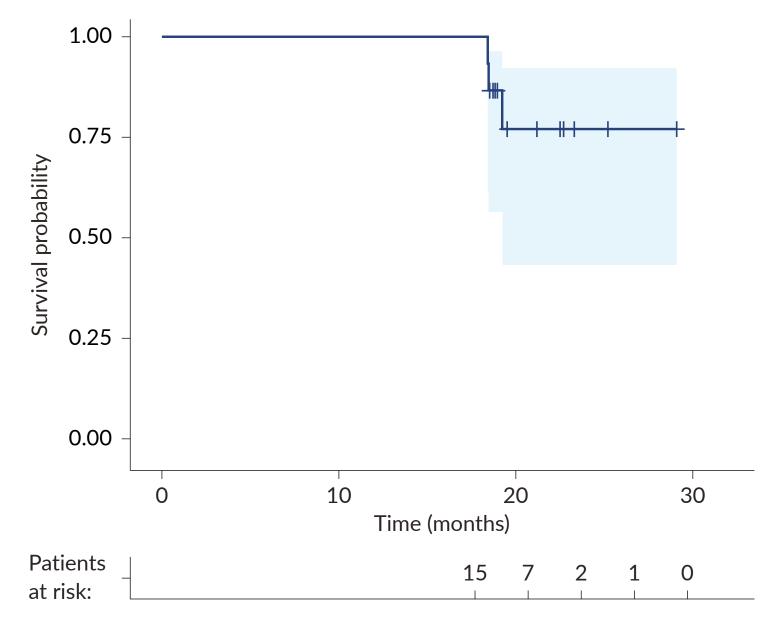

CA 19-9, carbohydrate antigen 19-9; ECOG PS, Eastern Cooperative Oncology Group Performance Status; eCRF, electronic case report form; IQR, interquartile range; ITT, intention-to-treat; NALIRIFOX, liposomal irinotecan + 5-fluorouracil/leucovorin + oxaliplatin; OS, overall survival.

Table 2. Cumulative dose and duration of exposure of liposomal irinotecan and oxaliplatin

	Safety population (n = 112)		ITT (n = 120)	
	Dose not reduced	Dose reduced	Long-term survivors	Overall
Liposomal irinotecan	n = 49	n = 63	n = 15	n = 120
Dose reduction, n (%)	0	63 (56.3)	10 (66.7)	63 (52.5)
Duration of exposure at any dose, weeks, median (IQR)	18.1 (4.1–35.0)	25.3 (15.1–53.7)	65.1 (40.1–89.0)	23.1 (10.9-44.8)
Cumulative dose, mg/m², median (IQR)	403.5 (102.1-809.4)	460.1 (245.9-966.9)	1229.4 (821.9-1513.9)	429.3 (202.7-860.1)
Oxaliplatin	n = 40	n = 72	n = 15	n = 120
Dose reduction, n (%)	0	72 (64.3)	12 (80.0)	72 (60.0)
Duration of exposure at any dose, weeks, median (IQR)	12.1 (3.6-24.7)	25.2 (15.1-43.8)	39.9 (26.6-76.4)	21.8 (10.9-37.6)
Cumulative dose, mg/m², median (IQR)	327.6 (121.6-628.5)	653.8 (304.9-974.8)	962.3 (655.0-1470.3)	481.9 (242.7-920.9)

IQR, interquartile range; ITT, intention-to-treat.

Figure 2. Overall survival of long-term survivors (intention-to-treat population)

Dose modification subgroups

- Patients who received dose reductions of liposomal irinotecan or oxaliplatin had a longer median (95% confidence interval) OS than those without dose reductions:
- Liposomal irinotecan: 13.0 (8.6–15.4) months vs 10.9 (7.7–13.9) months,
 respectively
- Oxaliplatin: 14.4 (11.5–15.9) months vs 8.3 (5.9–11.2) months, respectively.
- mOS by lowest dose of liposomal irinotecan and oxaliplatin in the global safety population is reported in **Supplementary Table S2**; please scan QR code.

Treatment exposure and cumulative dose

Long-term survivors

- Most long-term survivors experienced dose reductions of both liposomal irinotecan (66.7%) and oxaliplatin (80%) (Table 2).
- Median (IQR) cumulative dose of liposomal irinotecan was 1229.4 (821.9–1513.9) mg/m² for long-term survivors and median cumulative dose of oxaliplatin was 962.3 (655.0–1470.3) mg/m² (Table 2).
- Median (IQR) duration of exposure was 65.1 (40.1–89.0) weeks for liposomal irinotecan and 39.9 (26.6–76.4) weeks for oxaliplatin (Table 2).

Dose modification subgroups

- In the safety population, median duration of exposure and cumulative dose were longer among patients who received a dose reduction than among those who did not, for both liposomal irinotecan and oxaliplatin (Table 2).
- Median (IQR) cumulative dose of liposomal irinotecan was 460.1 (245.9–966.9) mg/m² for patients who received a dose reduction and median cumulative dose of oxaliplatin was 653.8 (304.9–974.8) mg/m².
- Median (IQR) duration of exposure was 25.3 (15.1–53.7) weeks for liposomal irinotecan and 25.2 (15.1–43.8) weeks for oxaliplatin.
- Reasons for dose reduction and discontinuation (in the safety population)
 are included in the Supplementary Materials (please scan QR code).

Author contributions All authors provided substantial contributions to study conception/design, or acquisition/analysis/interpretation of data; drafting of the publication, or reviewing it critically for important intellectual content, and gave their final approval of the publication.

Disclosures VC: Consulting or advisory role – Perthera. Research funding – Merck. AP: Nothing to disclose. YL: Employee – Genesis Research. MK: Nothing to disclose. NN: Nothing to disclose. GRW: Speakers' bureau – Cardinal Health, Takeda.

AL: Employee – Ipsen. Stock and other ownership interests – Ipsen. Travel, accommodation, expenses – Ipsen. WR: Employee – Genesis Research. AS: Employee – Genesis Research. LZ: Employee – Ipsen. Stock and other ownership interests – Ipsen.

JL: Employee – Ipsen. Stock and other ownership interests – Ipsen. FM: Employee – Ipsen. AZ: Nothing to disclose. EMO: Consulting or advisory role – AbbVie, AstraZeneca, Autem Medical, Berry Genomics, BioNTech SE, Boehringer Ingelheim, Bristol Myers Squibb/Celgene, Eisai, Exelixis, Genentech/Roche, Ipsen, J-Pharma, Merck, Merus, Novartis, QED Therapeutics, Revolution Medicines, Servier, Vector Health, Yiviva. Research funding to institution – Agenus, Arcus Ventures, AstraZeneca/MedImmune, BioNTech, Bristol Myers Squibb, Digestive Care, Elicio Therapeutics, Genentech, Helsinn Healthcare, Parker Institute for Cancer Immunotherapy, Puma Biotechnology, QED Therapeutics, Revolution Medicines, Yiviva. ZAW: Consulting or advisory role – Alligator Bioscience, Amgen, Arcus Biosciences, Astellas Pharma, AstraZeneca/MedImmune, Bayer, Bristol Myers Squibb, Daiichi Sankyo/AstraZeneca, EMD Serono, Ipsen, Janssen Oncology, Lilly, Merck, Merck KGaA, Novartis, Pfizer, PureTech, Revolution Medicines, Seagen. Research funding to institution – Five Prime Therapeutics, Merck, Novartis, Pfizer, Plexxikon. Travel, accommodation, expenses – Amgen, Bayer, Lilly, Merck.

References 1. US Food and Drug Administration. Prescribing Information: ONIVYDE® (irinotecan liposome injection), for intravenous use. Initial U.S. Approval: 1996. Revised February 2024. Available from: https://d2rkmuse97gwnh. cloudfront.net/a88aa6d6-3ca0-4362-a711-d53c45ae33ff/68b50c8f-8577-4904-950d-d82fa1f91417/68b50c8f-8577-4904-950d-d82fa1f91417_source__v.pdf (Accessed August 2025). 2. European Medicines Agency. Onyvide pegylated liposomal irinotecan hydrochloride trihydrate. Post authorisation summary. Available from: https://www.ema.europa.eu/en/documents/smop/chmp-post-authorisation-summary-positive-opinion-onivyde-pegylated-liposomal-previously-known-onivyde-ii-34_en.pdf (Accessed August 2025). 3. Ipsen. Onivyde® (irinotecan liposome injection). NCCN recommendations. Available from: https://www.onivyde.com/en-us/hcp/nccn-recommendation-irinotecan (Accessed August 2025). 4. Wainberg ZA et al. Lancet 2023;402:1272-81. 5. Rochefort P et al. Oncologist 2019;24:1543-8. 6. Ermiah E et al. Mol Clin Oncol 2022;17:126.

Abbreviations 1L, first-line; 5-FU, 5-fluorouracil; CA 19-9, carbohydrate antigen 19-9; CI, confidence interval; CT, computed tomography; ECOG PS, Eastern Cooperative Oncology Group Performance Status; eCRF, electronic case report form; Gem, gemcitabine; Gem+NabP, nab-paclitaxel plus gemcitabine; IQR, interquartile range; ITT, intention-to-treat; LV, leucovorin; mOS, median overall survival; mPDAC, metastatic pancreatic ductal adenocarcinoma; MRI, magnetic resonance imaging; NabP, nab-paclitaxel; NALIRIFOX, liposomal irinotecan + 5-fluorouracil/leucovorin + oxaliplatin; OS, overall survival; PDAC, pancreatic ductal adenocarcinoma; R, randomization; RECIST, Response Evaluation Criteria in Solid Tumors.

Medical writing support The authors thank Liz Sloan, PhD, of Oxford PharmaGenesis, Oxford, UK for providing medical writing and editorial support, which was sponsored by Ipsen in accordance with Good Publication Practice guidelines (GPP 2022)

Presented at the Network for Collaborative Oncology Development & Advancement (NCODA) 2025 International Fall Summit | October 15–17, 2025 | Orlando, Florida
© 2025 American Society of Clinical Oncology, Inc. Reused with permission. These data were previously presented at the 2025 American Society of Clinical Oncology (ASCO) Annual Meeting and the 2025 ASCO Gastrointestinal Cancers (ASCO GI) Symposium, and this poster was previously presented at the Pancreatic Cancer Action Network (PanCAN) Scientific Summit 2025

Acknowledgments The authors thank all patients involved in the study, as well as their caregivers and care teams, and the investigators and research staff in participating institutions.